Solve the integral: $$\int_0^{\pi/2} {\sin^2{x} \ln{\tan x} \,dx}$$ I have already found the answer to be $\frac{\pi}{4}$ by the method explained below, but I would like to know whether there is another way.
--- My method ---
Use a $u$-sub: $u=\tan x, \,du=\sec^2x \,dx$ $$\int_0^{\pi/2} {\sin^2{x} \ln{\tan x} \,dx}=\int_0^{\pi/2} {\frac{\tan^2{x}}{\sec^2{x}} \ln{\tan x} \,dx}=\int_0^{\pi/2} {\frac{\tan^2{x}}{\sec^4{x}} \ln{\left(\tan x\right)} \sec^2x \,dx}=\int_0^{\infty} {\frac{u^2}{\left(1+u^2\right)^2} \ln{u} \,du}$$
Now, just 'pull your luckiest rabbit out of your hat':
$$I(a) = \int_0^{\infty} {\frac{u^a \ln{u}}{\left(1+u^a\right)^2} \,du}$$
And use a 'reverse Feynman method':
$$\int{I(a) \,da} = \int_0^{\infty} {\int{ \left( \frac{u^a \ln{u}}{\left(1+u^a\right)^2} \,da\right)}\,du} = -\int_0^{\infty} {\frac{\,du}{1+u^a}} = -\frac{\pi}{a} \csc{\left(\frac{\pi}{a}\right)}$$
Now, $I(a)$ is just the derivative of the last expression:
$$I(a) = \frac{\,d}{\,da} {\left[ -\frac{\pi}{a} \csc{\left(\frac{\pi}{a}\right)} \right]} = \frac{1}{a} \left(\frac{\pi}{a}\csc{\left(\frac{\pi}{a}\right)}\right) \left(1-\frac{\pi}{a}\cot{\left(\frac{\pi}{a}\right)}\right) $$
Of course, the original integral was equivalent to $I(2)$, so:
$$\boxed{\int_0^{\pi/2} {\sin^2{x} \ln{\tan x} \,dx}=\frac{\pi}{4}}$$