Reshetnikov gave the remarkable evaluation,
\begin{align} I&= \int_0^1\arctan{_4F_3}\left(\frac15,\frac25,\frac35,\frac45;\frac24,\frac34,\frac54;\frac{1}{64}\,x\right)\,dx \\ &=\frac{3125}{48}\left(5+3\pi+6\ln2-3\alpha^4+4\alpha^3+6\alpha^2-12\alpha\\-12\left(\alpha^5-\alpha^4+1\right)\arctan\frac1\alpha-6\ln\left(1+\alpha^2\right)\right)\\ &=0.7857194\dots \end{align} where $\alpha$ is a quartic root. However, it seems this can be simplified a bit and generalized.
I. $p=5$: Given,
$$I(n)=\int_0^1\arctan\,_4F_3\left(\frac15,\frac25,\frac35,\frac45;\,\frac24,\frac34,\frac54;\,\frac{n}{4^4}\,x\right)\,\mathrm dx$$ Is it true that, in general, $$\frac{12n}{5^5}\, I(n) = -12\Big(1\color{blue}-\frac{n}{5^5}\Big)\arctan\frac1\alpha+6\ln\Big(\frac{2}{1+\alpha^2}\Big)+3\pi+P(\alpha)$$ where $P(\alpha)=(1-\alpha)^3(5+3\alpha)$ and $\alpha$ is the largest positive root of the quintic, $$\alpha^5-\alpha^4+\frac{n}{5^5}=0$$ provided real number $n<4^4\,$? (Note: By sheer coincidence, the choice of $n=4$ in the other post caused the quintic to factor.)
II. $p=7$: Given,
$$J(n)=\int_0^1\arctan\,_6F_5\left(\frac17,\frac27,\frac37,\frac47,\frac57,\frac67;\,\frac26,\frac36,\frac46,\frac56,\frac76;\,\frac{n}{6^6}\,x\right)\,\mathrm dx$$ is it true that, $$\frac{60n}{7^7}\, J(n) = 60\Big(1\color{blue}+\frac{n}{7^7}\Big)\arctan\frac1\alpha-30\ln\Big(\frac{2}{1+\alpha^2}\Big)-15\pi-P(\beta)$$ where $P(\beta) = (1-\beta)^2(27-6\beta-9\beta^2+8\beta^3+10\beta^4)$ and $\beta$ is the largest positive root of, $$\beta^7-\beta^6+\frac{n}{7^7}=0$$ provided real $n<6^6\,$?
Questions:
- How do we prove the two conjectured equalities?
- What's the formula for $p=3$? (Mathematica takes too long to evaluate the integral that I couldn't use an integer relations subroutine on it.)