I was using a double integral to check for some constants.
I came across this one.
How can we show that
$$\int_{0}^{1}\int_{0}^{1}{1-x\over 1-xy}\cdot{x\over \ln{(xy)}}dxdy={1\over 2}\ln{1\over 2}$$
My try:
$$\int_{0}^{1}\int_{0}^{1}\left[{x(1-xy)^{-1}\over \ln{(xy)}}-{x^2(1-xy)^{-1}\over \ln{(xy)}}\right]dxdy$$
Apply binomial series: $$\int_{0}^{1}\int_{0}^{1}\left[{x-x^2y+x^3y^2-x^4y^3+\cdots\over \ln{(xy)}}-{x^2-x^3y+x^4y^2-x^5y^3+\cdots\over \ln{(xy)}}\right]dxdy$$
I wonder if we can apply the Frullani theorem at this point?