I would like to show that
The product $\prod\limits_{\mathfrak p} (1 - N(\mathfrak p)^{-s})$ converges absolutely iff the series $\sum\limits_{\mathfrak p} N(\mathfrak p)^{-s}$ converges absolutely, where $\mathfrak p$ runs through the prime ideals of a number field $K$ and $s>1$.
I know that the product $\prod_{n \geq 1} (1 + x_n)$ with $|x_n| < 1$ converges absolutely iff the series $\sum_{n \geq 1} x_n$ converges absolutely. We have $$-\sum\limits_{\mathfrak p} N(\mathfrak p)^{-s} = -\sum\limits_{p} \sum\limits_{\mathfrak p \mid p} N(\mathfrak p)^{-s} = \sum_{n \geq 1} a_n, \qquad a_p := \sum\limits_{\mathfrak p \mid p} -N(\mathfrak p)^{-s}, a_n=0 \text{ if $n$ is not prime}$$ so applying the above theorem yields the product $$\prod_{n \geq 1} (1 + a_n) = \prod_{p} \left(1 - \sum\limits_{\mathfrak p \mid p} N(\mathfrak p)^{-s}\right)$$
I don't see how this can be equal to $$\prod\limits_{\mathfrak p} (1 - N(\mathfrak p)^{-s})$$ because my previous product will "miss" the "double" factors like $N(\mathfrak p)N(\mathfrak p')$.
Thank you!