There are no positive integer solutions to $x^4+y^4=z^2.$ By contradiction suppose $(x,y,z)$ is a positive solution with the least possible $z.$
If a prime $p$ divides $x$ and $y$ then $p^4$ divides $z^2,$ so $p^2$ divides $z.$ But then $(x',y',z')=(x/p,y/p,z/p^2)$ is a positive solution with $z'<z,$ contradicting the minimality of $z.$
Therefore $x,y$ are co-prime. So $(x^2,y^2,z)$ is a Fundamental Pythagorean triplet. So there exist co-prime positive integers $m,n$, not both odd, with $\{x^2,y^2\}=\{m^2-n^2, 2mn\}$ and $z=m^2+n^2.$ WLOG $x^2=m^2-n^2$ and $y^2=2mn.$ Note that $x$ is odd and $y$ is even.
Now $x^2+n^2=m^2.$ A prime divisor of both $x$ and $n$ must divide $m,$ but $\gcd(m,n)=1.$ So $x,n$ are co-prime and $(x,n,m)$ is a Fundamental Pythagorean triplet. So there are co-prime positive integers $a,b$ with $\{a^2-b^2, 2ab\}=\{x,n\}$ and $a^2+b^2=m.$ Since $x$ is odd we have $x=a^2-b^2$ and $n=2ab.$
Now $y^2=2mn=2(a^2+b^2)(2ab)=4(a^2+b^2)ab.$ But $\gcd (a,b)=1$ so the members of $\{a,b, a^2+b^2\}$ are pair-wise co-prime and their product $(y/2)^2$ is a square. Therefore each of $a,b,a^2+b^2$ is a square: There are positive integers $d,e,f$ with $a=d^2,b=e^2,a^2+b^2=f^2.$ Therefore $$ f^2=a^2+b^2=d^4+e^4.$$ But $f^2=a^2+b^2=m<m^2+n^2=z,$ so $f\leq f^2<z.$ This contradicts the minimality of $z.$