This was buried in a rather long question, so I'm asking it separately to give it some air. Define, $$A_3={_3F_2}\left(1,\frac{\color{blue}1}2,\frac22;\ \frac43,\frac53;\ \frac4{27}\right)$$ $$B_3={_3F_2}\left(1,\frac{\color{blue}2}2,\frac32;\ \frac43,\frac53;\ \frac4{27}\right)$$ $$C_3={_3F_2}\left(1,\frac{\color{blue}3}2,\frac42;\ \frac43,\frac53;\ \frac4{27}\right)$$
These generalized hypergeometric functions belong to infinite families that differ in the starting numerator (in blue). Given the three roots $x_n$ of $x^3-x+1=0$. Then,
$$\frac12 A_3= \int_1^\infty \frac{-3+2x}{x^3-x+1}dx =-\sum_{n=1}^3 x_n\ln(1-x_n)=0.517977\dots$$
$$\frac13 B_3 = \int_1^\infty\frac1{x(x^3-x+1)}dx=-\sum_{n=1}^3 \frac{\ln(1-x_n)}{-3+2x_n}=0.371216\dots$$
Q: But what is $\displaystyle C_3 = 3\sum_{n=1}^\infty\frac1{\binom{3n}n}$ as a similar integral?
$\color{green}{Update:}$
Courtesy of David H's answer, by generalizing we find, $$k\sum_{n=1}^\infty\frac1{\binom{kn}n}=\int_1^\infty\frac1{(x^k-x+1)^2}dx$$ hence, $$C_3 = \int_1^\infty\frac1{(x^3-x+1)^2}dx=\tfrac{12}{23}-\tfrac{6}{23}\sum_{n=1}^3 \frac{3x_n + x_n^2}{-3+2x_n}\,\ln(1-x_n)=1.242966\dots$$
and a closed-form using the roots $x_n$.