$$ 1-5\left(\frac{1}{2}\right)^3+9\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^3-13\left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^3+\cdots $$
I went on evaluating the above series and encountered that solving $\displaystyle \sum_{n\ge 0}\left(\binom{2n}{n}\right)^3x^n$ would suffice.
But how do we make a generating function for the third power of a central binomial coefficient using the fact $\displaystyle \sum_{n\ge 0}\binom{2n}{n}x^n=\frac{1}{\sqrt{1-4x}}$