Consider the sum of $n$ terms :
$S_n = 1 + \frac{1}{1+2} + \frac {1}{1+2+3} + ... + \frac {1}{1+2+3+...+n}$ for $n \in N$.
Find the least rational number $r$ such that $S_n < r$, for all $n \in N$.
My attempt :
$S_n = 2(1-\frac{1}{2} + \frac {1}{2} - \frac{1}{3} + .... + \frac {1}{n} - \frac {1}{n+1}) = 2(1 - \frac {1}{n+1}) $
Now what to do with that '$r$' thing ?
How to proceed ?