Evaluate:$\displaystyle\lim_{n\to\infty}\sum_{k=0}^n \frac1{k!}\left(-\frac12\right)^k$
MY TRY:We know that $\displaystyle\lim_{n\to\infty}\sum_{k=0}^n \frac1{k!}=e$ and $\displaystyle\lim_{n\to\infty}\sum_{k=0}^n \left(-\frac12\right)^k=\frac 23$ but how can we evaluate the above$?$Thank you.
Note:The answer is $\frac{1}{\sqrt e}$