0

Evaluate:$\displaystyle\lim_{n\to\infty}\sum_{k=0}^n \frac1{k!}\left(-\frac12\right)^k$

MY TRY:We know that $\displaystyle\lim_{n\to\infty}\sum_{k=0}^n \frac1{k!}=e$ and $\displaystyle\lim_{n\to\infty}\sum_{k=0}^n \left(-\frac12\right)^k=\frac 23$ but how can we evaluate the above$?$Thank you.

Note:The answer is $\frac{1}{\sqrt e}$

MatheMagic
  • 2,386

2 Answers2

3

HINT:

$$e^x=\sum_{r=0}^\infty\dfrac{x^r}{r!}$$

1

We have $\displaystyle e^x=\sum_{k=0}^\infty\frac{x^k}{k!}$.

So $\displaystyle\lim_{n\to\infty}\sum_{k=0}^n \frac1{k!}\left(-\frac12\right)^k=\displaystyle\lim_{n\to\infty}\sum_{k=0}^n \frac{\left(-\frac12\right)^k}{k!}=e^{\frac {-1}{2}}=\frac 1{\sqrt e}$

MatheMagic
  • 2,386