3

How can I calculate $\displaystyle\sup_{x\in [-1,1]}\{ |\sin(nx)- \sin(mx)| : m,n\in \mathbb{N}\}$ ?

This is what i have tried

$\sin(nx)- \sin(mx)= 2\cos (\frac{nx+mx}{2})\sin(\frac{nx-mx}{2})$

$\Rightarrow$

$|\sin(nx)- \sin(mx)|= 2|\cos (\frac{nx+mx}{2})||\sin(\frac{nx-mx}{2})|$

But I do not know what else to do...

1 Answers1

0

An idea: First, you can suppose that there is(are) solution(s) for $\sin{(nx)} = \pm1$ and $\sin{(mx)} = \pm1$. For find the sup, you need x such that $\sin{nx} = 1$(or -1, whatever) and $\sin{mx}= -1$(or 1, if first is 1). So, we have

$$nx = \frac{\pi}{2} + 2 k \pi \;\;\&\,\,mx = \frac{3\pi}{2} + 2 \tilde{k} \pi$$

With $k,\tilde{k}\in \mathbb{Z}$.

add to it, that $x\in [-1,1]$, And you will find a explicit formula for sup.