We have with
$$f(z) = \frac{z^{k+1}}{(1-z)^2} \frac{nz^{n-1}}{z^n+1}
= \frac{1}{(z-1)^2} \frac{nz^{n+k}}{z^n+1} $$
and $\zeta_{n,q} = \exp(\pi i/n+ 2\pi i q/n)$
$$\sum_{x^n+1=0} \frac{x^{k+1}}{(1-x)^2}
= \sum_{q=0}^{n-1}
\mathrm{Res}_{\large z=\zeta_{n,q}} f(z).$$
This is also given by (residues sum to zero)
$$-\mathrm{Res}_{z=1} f(z)
-\mathrm{Res}_{z=\infty} f(z).$$
For the first of these we differentiate to obtain
$$\frac{n(n+k) z^{n+k-1}}{z^n+1}
- \frac{nz^{n+k}}{(z^n+1)^2} n z^{n-1}$$
Evaluate at $z=1$ to get
$$\frac{1}{2} n(n+k) - \frac{1}{4} n^2
= \frac{1}{2} nk + \frac{1}{4} n^2.$$
For the residue at infinity we get
$$-\mathrm{Res}_{z=0} \frac{1}{z^2}
\frac{1}{(1/z-1)^2} \frac{n/z^{n+k}}{1/z^n+1}
\\ = -\mathrm{Res}_{z=0}
\frac{1}{(1-z)^2} \frac{n}{z^{n+k}+z^k}
\\ = -\mathrm{Res}_{z=0} \frac{1}{z^k}
\frac{1}{(1-z)^2} \frac{n}{z^{n}+1}$$
This is
$$-[z^{k-1}] \frac{1}{(1-z)^2} \frac{n}{z^{n}+1}.$$
With $k\le n$ only the constant term from $\frac{n}{z^{n}+1}$
contributes and we get
$$-[z^{k-1}] \frac{n}{(1-z)^2} = -nk.$$
Adding the contributions from the residues at one and at infinity
and flipping the sign we thus obtain
$$-\left(\frac{1}{2} nk + \frac{1}{4} n^2
- nk\right)
= -\left(-\frac{1}{2} nk + \frac{1}{4} n^2\right)
= -\frac{1}{2} n \left(\frac{1}{2}n - k\right).$$
This is
$$\bbox[5px,border:2px solid #00A000]{
\frac{1}{2} n \left(k - \frac{1}{2} n\right)}$$
as claimed.