A multilinear form is a mapping
\begin{align} \Delta: V^n \rightarrow K \end{align}
where $V$ is a finite-dimensional vector space over field $K$.
It must meet the following requirements:
- First:
\begin{align} &\Delta\left(a_1, \dots, a_{i-1}, a_i+a_i', a_{i+1}, \dots, a_n\right) \\ =\; &\Delta\left(a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_n\right) \\ +\; &\Delta\left(a_1, \dots, a_{i-1}, a_i', a_{i+1}, \dots, a_n\right) \end{align}
- Second:
\begin{align} &\Delta\left(a_1, \dots, a_{i-1}, \lambda a_i, a_{i+1}, \dots, a_n\right) \\ =\; \lambda&\Delta\left(a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_n\right) \end{align}
I know that the multilinear forms form a vector space over $K$. Let $W$ be that vector space.
Now I want to figure out what $\dim_K W$ is but I don't know where to start. Can you help me?