2

What is value of $\dfrac {1}{2\cdot 3} + \dfrac {1}{4\cdot 5} +\dfrac {1}{6\cdot7} + \cdots =?$

1) $\log \left( \dfrac 2e \right)$

2) $\log \left( \dfrac e2 \right)$

3) $\log \left( 2e \right)$

4) $e-1$

I know it converges but I am not getting how to solve

StubbornAtom
  • 17,052

3 Answers3

4

We use $$\frac{1}{n(n+1)}=\frac{n+1-n}{n(n+1)}=\frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$$ Note that your series, $$\dfrac {1}{2 \times 3} + \dfrac {1}{4 \times 5} +\dfrac {1}{6 \times 7} + \cdots=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\dots$$ Since $$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots=\ln 2$$ This result is known, and is discussed as the Alternating Harmonic Series on Wikipedia. So since $$\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\dots=1-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots \right)$$ the answer is $1-\ln 2$. So the answer to your question is $$1-\ln 2=\ln e-\ln 2=\ln \frac{e}{2}$$So the answer is $2)$

S.C.B.
  • 22,768
2

Herein we present a methodology that relies on only straightforward arithmetic and knowledge of Riemann sums. To that end, we now proceed.


The general term in the series is $a_n=\frac{1}{2n(2n+1)}=\frac{1}{2n}-\frac{1}{2n+1}$.

Then, we have

$$\begin{align} \sum_{n=1}^N a_n&=\sum_{n=1}^{N}\left(\frac{1}{2n}-\frac{1}{2n+1}\right)\\\\ &=-\sum_{n=1}^{N}\left(\frac{1}{2n}+\frac{1}{2n+1}\right)+\sum_{n=1}^N\frac1n\\\\ &=1-\left(\sum_{n=1}^{2N+1}\frac1n-\sum_{n=1}^{N}\frac1n\right)\\\\ &=1-\sum_{n=N+1}^{2N+1}\frac1n\\\\ &=1-\sum_{n=1}^{N+1}\frac1{n+N}\\\\ &=1-\frac1N\sum_{n=1}^{N+1}\frac{1}{1+n/N}\tag 1 \end{align}$$

Recognizing the sum on the right-hand side of $(1)$ as the Riemann sum for $\int_0^1 \frac{1}{1+x}\,dx=\log(2)$, we have

$$\lim_{N\to \infty}\sum_{n=1}^Na_n=1-\log(2)=\log(e/2)$$

Mark Viola
  • 179,405
1

An alternative solution, just for fun: $$\begin{eqnarray*}\sum_{n\geq 1}\frac{1}{2n(2n+1)} = \int_{0}^{1}\sum_{n\geq 1}\frac{x^{2n}}{2n}\,dx &=& -\frac{1}{2}\int_{0}^{1}\log(1-x^2)\,dx \\(IBP)\quad&=&\int_{0}^{1}x\cdot\frac{1-x}{1-x^2}\,dx\\&=&\int_{0}^{1}\frac{x}{1+x}\,dx\\&=&1-\log 2=\color{red}{\log\left(\frac{e}{2}\right)}.\end{eqnarray*}$$

Jack D'Aurizio
  • 353,855