$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{x = 0}^{n}x{N_{1} \choose n - x}{N_{2} \choose x} & =
\sum_{x = 0}^{\infty}x{N_{2} \choose x}\ \overbrace{%
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{N_{1}} \over z^{n - x + 1}}
\,{\dd z \over 2\pi\ic}}^{\ds{N_{1} \choose n - x}}
\\[5mm] & =
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{N_{1}} \over z^{n + 1}}\ \overbrace{%
\sum_{x = 0}^{\infty}{N_{2} \choose x}x\,z^{x}}
^{\ds{N_{2}\,z\,\pars{1 + z}^{N_{2} - 1}}}\ \,{\dd z \over 2\pi\ic}
\\[5mm] & =
N_{2}\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{N_{1} + N_{2} - 1} \over z^{n}}
\,{\dd z \over 2\pi\ic} =
\bbx{\ds{N_{2}{N_{1} + N_{2} - 1 \choose n - 1}}}
\end{align}