I'm self learning calculus and I stumbled upon the following problem:
Express
$I_n =\int \frac{dx}{(x^2+a^2)^n}$
Using $I_{n-1}$ ($a$ is a positive parameter and $n=2,3,4,...$)
Is this about double integrals? Could anyone please elaborate a bit more so I can learn how to solve this type of problems?
=================
EDIT
Continuing @SimplyBeautifulArt's answer:
$I_n=a^{1-2n}\int{cos^{2n-2}(u)du} = a^{1-2n}\int{cos^{2n-3}(u)cos(u)du}$
$I_{n-1}=a^{3-2n}\int{cos^{2n-4}(u)du}$
Integrating by parts($f:cos^{2n-3}(u); dg:cos(u)du$):
$I_n=a^{1-2n}(cos^{2n-3}(u)sin(u) + (2n-3)\int{cos^{2n-4}(u)sin^2(u)du})$
$I_n=a^{1-2n}(cos^{2n-3}(u)sin(u) + (2n-3)(\int{cos^{2n-4}(u)du} -\int{cos^{2n-2}(u)du}))$
$I_n=a^{1-2n}cos^{2n-3}(u)sin(u) + (2n-3)(\frac{a^{3-2n}}{a^2}\int{cos^{2n-4}(u)du} -a^{1-2n}\int{cos^{2n-2}(u)du})$
$I_n=a^{1-2n}cos^{2n-3}(u)sin(u) + (2n-3)(\frac{I_{n-1}}{a^2} -I_n)$
$I_n=(a^{1-2n}cos^{2n-3}(u)sin(u) + (2n-3)\frac{I_{n-1}}{a^2})/2n-2$
Recall $u=arctan(\frac xa)$
$I_n=(a^{1-2n}\frac{1}{\sqrt{1+(x/a)^2}}^{2n-3}\frac{x/a}{\sqrt{1+(x/a)^2}} + (2n-3)\frac{I_{n-1}}{a^2})/2n-2$
Is that all?