$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With $\ds{x \equiv u + v}$ and $\ds{y = u - v}$:
\begin{align}
&\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\exp\pars{-\bracks{3x^{2} + 2\root{2}xy + 3y^{2}}}\,\dd x\,\dd y
\\[5mm] = &\
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}
\exp\pars{-\bracks{6 + 2\root{2}}u^{2}}\exp\pars{-\bracks{6 - 2\root{2}}v^{2}}\,
\
\overbrace{\verts{\partial\pars{x,y} \over \partial\pars{u,v}}}^{\ds{2}}\,\dd u\,\dd v
\\[5mm] = &\
\bbx{\ds{\root{7} \over 7}\,\pi} \approx 1.1874
\end{align}