Here, all rings are unital and $R$-modules are in fact left $R$-modules.
Let $M_1$ be a $R_1$-module and $M_2$ be a $R_2$-module. Then, we can view $M_1\oplus M_2$ as a ($R_1\oplus R_2$)-module, under the operation $\mathcal{o}((r_1,r_2).(m_1,m_2)):=(r_1m_1,r_2m_2)$.
My question is : Given any ($R_1\oplus R_2$)-module $M$, is $M$ isomorphic (as $(R_1\oplus R_2)$-module) to some $M'=M_1\oplus M_2$, where $M_i$ is a $R_i$-module and $M'$ is a $(R_1\oplus R_2)$-module under $o$ ?