5

If $X$ and $Y$ are two CW complexes such that $\Sigma X$ and $\Sigma Y$ are homotopy equivalent, are the spaces $X$ and $Y$ homotopy equivalent? I have seen a counterexample when $\pi_1(X)$ is not zero, so I am really looking for counterexamples where $X$ and $Y$ are $1$ connected.

happymath
  • 6,148

1 Answers1

3

The spaces $\Sigma(S^n\times S^m)$ and $\Sigma\left(S^n\vee S^m\vee S^{m+n}\right) \cong S^{n+1}\vee S^{m+1}\vee S^{m+n+1}$ are homotopy eqiuvalent, while $S^n\times S^m$ and $S^n\vee S^m\vee S^{m+n}$ are not.