$$\lim_{x\to0}\frac {2^{\tan 2x}\left(2^{(2\sin x-\tan 2x)}-1\right)}{3^{(2\tan x} \left(3^{(\sin 2x-2\tan x)}-1\right)}$$
$$=\lim_{x\to0}\frac {2^{\tan 2x}}{3^{2\tan x}}\cdot\underbrace{\lim_{x\to0}\dfrac{2^{(2\sin x-\tan 2x)}-1}{2\sin x-\tan 2x}}_{(1)}\cdot\lim_{x\to0}\dfrac1{\underbrace{\dfrac{3^{(\sin 2x-2\tan x)}-1}{\sin 2x-2\tan x}}_{(2)}}\cdot\lim_{x\to0}\dfrac{2\sin x-\tan 2x}{\sin 2x-2\tan x}$$
For $(1),(2)$ use $\lim_{h\to0}\dfrac{a^h-1}h=\ln a$
Now $\lim_{x\to0}\dfrac{2\sin x-\tan 2x}{\sin 2x-2\tan x}$
$=\lim_{x\to0}\dfrac{\cos x}{\cos2x}\cdot\lim_{x\to0}\dfrac{2\sin x\cos2x-\sin2x}{\sin2x\cos x-2\sin x}$
$=\lim_{x\to0}\dfrac{2\sin x(\cos2x-\cos x)}{2\sin x(\cos^2x-1)}$
$=2\cdot\dfrac32\cdot\dfrac12\lim_{x\to0}\dfrac{\sin\dfrac{3x}2}{\dfrac{3x}2}\cdot\lim_{x\to0}\dfrac{\sin\dfrac x2}{\dfrac x2}\cdot\dfrac1{\left(\lim_{x\to0}\dfrac{\sin x}x\right)^2}=?$