Condition 1: $\vec v \perp \vec u_3 \iff \vec v\cdot \vec u_3 = 0$.
So let $\vec v=(v_1,v_2,v_3)$. Then $\vec v$ satisfies $$2v_1 + v_2 - v_3 = 0$$
Condition 2: $\vec v\in\operatorname{span}(\vec u_1, \vec u_2) \iff \vec v\wedge \vec u_1\wedge \vec u_2 = 0$.
So additionally, $\vec v$ satisfies: $$(v_1\hat e_1 + v_2\hat e_2 + v_3\hat e_3)\wedge(2\hat e_1\wedge \hat e_2 + 4\hat e_1\wedge \hat e_3 + 14\hat e_2\wedge \hat e_3) = 0 \\ (14v_1-4v_2+2v_3)e_1\wedge e_2\wedge e_3=0$$
Then the solution to the system of equations $$\begin{cases} 2v_1 + v_2 - v_3 = 0 \\ 14v_1-4v_2+2v_3 = 0\end{cases}$$ is $\operatorname{span}(1,9,11)$. So all vectors parallel to $(1,9,11)$ will satisfy your conditions.