0

I've tried so hard to find this limit, could you help me? $ \lim_{n \to +\infty} \tfrac{n}{\log n} (\sqrt[n]{2n} -1) $ . Do you have any suggestion?

zhw.
  • 105,693
ambimath
  • 55
  • 7

1 Answers1

1

Hint: The expression equals

$$\frac{n}{\ln n}(e^{(\ln 2n)/n}-1) = \frac{n}{\ln n}(\ln 2n)/n)\frac{e^{(\ln 2n)/n}-1}{(\ln 2n)/n}.$$

Recall $\lim_{u\to 0} (e^u-1)/u = 1.$

zhw.
  • 105,693