Im trying to find the torsion points of $y^2=x^3+1$.
If $y=0$, then $x=-1$.
If $y^2 \mid 27$, then $y= \pm 1$, $\pm 3$. We get $y= \pm 3$, $x=2$ and $y= \pm 1$, $x=0$.
Thus, $E(Q)_{\text{tors}}= \{O,(-1,0), (2, \pm 3), (0, \pm1) \}$.
Here is the step I do not understand:
Why do we have that $E(Q)_{\text{tors}}= \langle 2,3\rangle\cong \mathbb{Z}/6\mathbb{Z}$?
I get that we have 6 elements so $\mathbb{Z}/6\mathbb{Z} $ would be my "natural" intuition. But I'm not sure how do prove it.