if :
$$\lim_{ x \to 0 }\left( \frac{\sin 3x}{x^3}+\frac{a}{x^2}+b \right)=0$$
then $a+b=?$
Without the use of the L'Hôspital's Rule
My Try :
$$\lim_{ x \to 0 }\left( \frac{ax+bx^3+\sin 3x}{x^3} \right)=0$$
$$\lim_{ x \to 0 }\left( \frac{x(a+bx^2)+\sin 3x}{x^3} \right)=0$$
$$\lim_{ x \to 0 }x(a+bx^2)+\sin 3x=0 $$
now ?