I'm trying to find units of $\mathbb Z[\sqrt{-5}]$.
So let $a,b\in \mathbb Z[\sqrt{-5}]$ s.t. $ab=1$. if $a=a_1+\sqrt{-5}a_2$ and $b=b_1+\sqrt{-5}b_2$, then we get $$\begin{cases}a_1b_1-5a_2b_2=1\\ a_1b_2+b_1a_2=0\end{cases}.$$ First equation give us $a_1,b_1\in \mathbb Z/5\mathbb Z$ and thus $$(a_1,b_1)\in \{(1,1),(2,3),(4,4)\}, $$ but how can I continue ? I was wondering to solve the second equation in $\mathbb Z/5\mathbb Z$, but I get $a_1b_2=4b_1a_2$, but it's unfortunately not conclusive.