4

fine the limits-without-lhopital rule

$$\lim_{ x \to0^- }\frac{2^{\frac{1}{x}}+2^{\frac{-1}{x}}}{3^{\frac{1}{x}}+3^{\frac{-1}{x}}}=?$$

My Try :

$h= \frac{1}{x} :h\to - \infty$

so :

$$\lim_{ h\to - \infty }\frac{2^{h}+2^{-h}}{3^{h}+3^{-h}}=?\\\lim_{ h\to - \infty}\frac{(2^{-h})2^{2h}+1}{(3^{-h})3^{2h}+1}=?\\\lim_{ h\to - \infty }\frac{(2^{-h})2^{2h}+1}{(3^{-h})3^{2h}+1}=?$$

now :?

Almot1960
  • 4,782
  • 16
  • 38

1 Answers1

3

$$\frac{2^{\frac{1}{x}}+2^{\frac{-1}{x}}}{3^{\frac{1}{x}}+3^{\frac{-1}{x}}}=\left(\frac32\right)^{1/x}\frac{2^{2/x}+1}{3^{2/x}+1}\xrightarrow[x\to0^-]{}0\cdot\frac{0+1}{0+1}=0$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287