$$ \int\limits_0^{+\infty} e^{-a^2x^2-\frac{b^2}{x^2}} dx$$
I'm stuck after doing this:
$$ I = e^{-2ab}\int\limits_0^{+\infty} e^{-(ax-\frac{b}{x})^2} dx$$
$$ \int\limits_0^{+\infty} e^{-a^2x^2-\frac{b^2}{x^2}} dx$$
I'm stuck after doing this:
$$ I = e^{-2ab}\int\limits_0^{+\infty} e^{-(ax-\frac{b}{x})^2} dx$$
After doing that, set $x=z\sqrt{\frac{b}{a}},\;dx = dz\sqrt{\frac{b}{a}}$ and apply Glasser's master theorem or just the
Lemma. If $f\in L^1(\mathbb{R})$, $$ \int_{-\infty}^{+\infty}f(x)\,dx = \int_{-\infty}^{+\infty}f\left(x-\frac{1}{x}\right)\,dx.$$