The sequence is defined: $$u_1=1, u_{n+1}=1+\dfrac n {u_n}$$
The question asks to find an asymptotic development of 2 terms for $n\to+\infty$. I have got $u_n\sim_\infty\sqrt{n} $, but how to derive the 2nd term?
The sequence is defined: $$u_1=1, u_{n+1}=1+\dfrac n {u_n}$$
The question asks to find an asymptotic development of 2 terms for $n\to+\infty$. I have got $u_n\sim_\infty\sqrt{n} $, but how to derive the 2nd term?
Let $u_{n}=\sqrt{n}+a+\dfrac{b}{\sqrt{n}}+O\left( \dfrac{1}{n} \right)$, then
\begin{align*} u_{n+1} &\sim 1+\frac{n}{\sqrt{n}+a+\frac{b}{\sqrt{n}}} \\ \sqrt{n+1}+a+\frac{b}{\sqrt{n+1}} &\sim 1+\frac{n}{\sqrt{n}+a+\frac{b}{\sqrt{n}}} \\ \sqrt{n}+a+\frac{b+\frac{1}{2}}{\sqrt{n}} &\sim \sqrt{n}+(1-a)+\frac{a^2-b}{\sqrt{n}} \\ \end{align*}
Equating corresponding orders:
$$ \left \{ \begin{align*} a &= 1-a \\ b+\frac{1}{2} &= a^2-b \end{align*} \right. \implies (a,b)=\left( \frac{1}{2},-\frac{1}{8} \right)$$