Suppose $a$ is a real number for which all the roots of the equation $x^{4} - 2ax^{2}+x+a^{2}-a=0$ are real. Then
(a) $\quad a<-\frac{2}{3}$
(b) $\quad a=0$
(c) $\quad 0<a<\frac{3}{4}$
(d) $\quad a\ge \frac{3}{4}$
Suppose $a$ is a real number for which all the roots of the equation $x^{4} - 2ax^{2}+x+a^{2}-a=0$ are real. Then
(a) $\quad a<-\frac{2}{3}$
(b) $\quad a=0$
(c) $\quad 0<a<\frac{3}{4}$
(d) $\quad a\ge \frac{3}{4}$
Solve $a$ in terms of $x$ first,
\begin{align*} a^2-(2x^2+1)a+x^4+x &= 0 \\ a &= \frac{2x^2+1\pm \sqrt{(2x^2+1)^2-4(x^4+x)}}{2} \\ &= \frac{2x^2+1 \pm \sqrt{4x^2-4x+1}}{2} \\ &= \frac{2x^2+1 \pm (2x-1)}{2} \\ &= x^2 \pm x+\frac{1\mp 1}{2} \\ &= x^2+x \qquad \text{or} \qquad x^2-x+1 \\ x^4-2ax^2+x+a^2-a &= (x^2+x-a)(x^2-x-a+1) \end{align*}
Case I: $x^2+x-a=0$ \begin{align*} \Delta &\ge 0 \\ 1+4a &\ge 0 \\ a &\ge -\frac{1}{4} \end{align*}
Case II: $x^2-x-a+1=0$ \begin{align*} \Delta &\ge 0 \\ 1+4(a-1) &\ge 0 \\ a &\ge \frac{3}{4} \end{align*}
For all roots to be real,
$$a\in \left[ -\frac{1}{4}, \infty \right) \cap \left[ \frac{3}{4}, \infty \right)$$
$$\fbox{$a\ge \frac{3}{4}$}$$
See another answer here.