Denote the sum as $s_n$, then given any $M > 0$, we have there exists large enough $m > 0$ such that,
$$
s_k > M,\quad k \ge m
$$
For example, $m = \Big{\lceil}2M/(1 - \frac{1}{2^{1/17}})\Big{\rceil}$ (let $m_1=\Big{\lceil}\frac{m}{2^\frac{1}{17}}\Big{\rceil}$, clearly $\big{(}\frac{m_1}{m}\big{)}^{17} \ge \frac{1}{2}$ and $m - m_1 > 2M$, hence $s_m > \frac{1}{2}\cdot(2M)=M$).
Therefore, $\lim_{n\rightarrow \infty}s_n=\infty$. (Definition 3.3 in http://math.mit.edu/~apm/ch03.pdf)
BTW, @labbhattacharjee, (Sorry I can not make a comment on your answer directly), I have some doubts about some arguments in the answer. I think we can only get
$$
\lim_{n \rightarrow \infty}f(n)g(n) = \lim_{n\rightarrow \infty}f(n)\lim_{n\rightarrow \infty}g(n)
$$
when both $g(n)$ and $f(n)$ have finite limit.
For example,
$$
1 = \lim_{n\rightarrow \infty}\frac{n}{n + 1} \neq \lim_{n\rightarrow \infty}n\lim_{n\rightarrow\infty}\frac{1}{n+1} = \infty\cdot 0
$$