$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{k = -\infty}^{\infty}{r \choose m + k}{s \choose n - k} & =
\sum_{k = -\infty}^{\infty}{r \choose k}{s \choose m + n - k} =
\sum_{k = -\infty}^{\infty}{r \choose k}\bracks{z^{m + n - k}}\pars{1 + z}^{s}
\end{align}
where $\ds{\bracks{z^{m}}\mrm{f}\pars{z}}$ denotes the coefficient of $\ds{z^{m}}$ in an expansion of $\ds{\,\mrm{f}\pars{z}}$ in powers of $\ds{z}$.
Obviously, $\ds{\bracks{z^{a - b}}\mrm{f}\pars{z} =
\bracks{z^{a}}\braces{z^{b}\,\mrm{f}\pars{z}}}$.
Then,
\begin{align}
&\sum_{k = -\infty}^{\infty}{r \choose m + k}{s \choose n - k} =
\sum_{k = -\infty}^{\infty}{r \choose k}
\bracks{z^{m + n}}\braces{z^{k}\pars{1 + z}^{s}}
\\[5mm] = &\
\bracks{z^{m + n}}
\braces{\pars{1 + z}^{s}\sum_{k = -\infty}^{\infty}{r \choose k}z^{k}} =
\bracks{z^{m + n}}\braces{\pars{1 + z}^{s}\pars{1 + z}^{r}} =
\bracks{z^{m + n}}\pars{1 + z}^{r + s}
\\[5mm] = &\
\bbx{\ds{r + s \choose m + n}}
\end{align}