6

I am almost a complete number theory newbie so pardon me if this is stupid.

$$128 - 125 = 3$$ $$2^7 - 5^3 = 3$$

Are there an infinite number of these, four primes $p_1,p_2,p_3,p_4$ so that:

$${p_1}^{p_2} - {p_3}^{p_4} = p_4$$

mathreadler
  • 25,824

1 Answers1

1

Considering Fermat little theorem we can write:

$p_1^{p_2-1}-1= k_1 p_2$ ⇒ $p_1^{p_2}=p_1 +k_1 p_1 p_2$

$p_3^{p_4-1}-1= k_2 p_4$ ⇒ $p_3^{p_4}=p_3 +k_2 p_3 p_4$

Subtracting two relations we get:

$p_1^{p_2}-p_3^{p_4}=p_1(1 +k_1 p_2) - p_3(1 +k_2 p_4)$

Due to the question we mus have:

$p_1(1 +k_1 p_2) - p_3(1 +k_2 p_4)=p_4$

⇒$p_4=\frac{p_1(1+k_1 p_2)-p_3}{1 +k_2 p_3}$

For arbitrary value of $p_1.and. p_2$, $k_1$ and $A=p_1(1+k_1 p_2)$can be calculated and above relation reduces to:

$p_4 +p_3+k_2 p_3 p_4 = A $

This Diophantine equation depending on certain values of A and $p_3$ or$p_4$ can have some values for $k_2$.For example:

$p_1=2, p_2=7$ gives $k_1=9$ and $A=2(1+9 . 7) =128$. Now only $p_3 =5$ gives $k_2=8$ and $p_4=3$

Using this algorithm a clever computer program may give more solutions.The number of solutions must be investigated.

sirous
  • 10,751