For $a,b>0$. Minimize $$A=\frac{1+2^{x+y}}{1+4^x}+\frac{1+2^{x+y}}{1+4^y}$$
i think we let $2^x=a;2^y=b$
Hence $A=\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}$
We need pro $A\geq 2$(Wolfram Alpha) but $x,y$ is a very odd number and i can't find how to prove it $\geq2$