$f(2x)=\dfrac1{1+2\cos2x}=\dfrac1{1+2(1-2\sin^2x)}=\dfrac{\sin x}{\sin3x}$ for $\sin x\ne0$
$x=\dfrac\pi7\implies f\left(\dfrac{2\pi}7\right)=\dfrac{\sin\dfrac{\pi}7}{\sin\dfrac{3\pi}7}=2\cos\dfrac{3\pi}7$ as $\sin\dfrac{\pi}7=\sin\left(\pi-
\dfrac\pi7\right)=2\sin\dfrac{3\pi}7\cos\dfrac{3\pi}7$
$x=\dfrac{2\pi}7\implies f\left(\dfrac{4\pi}7\right)=\dfrac{\sin\dfrac{2\pi}7}{\sin\dfrac{6\pi}7}=2\cos\dfrac{\pi}7$ as $\sin\dfrac{6\pi}7=\sin\left(\pi-\dfrac{6\pi}7\right)$
$x=\dfrac{3\pi}7\implies f\left(\dfrac{6\pi}7\right)=\dfrac{\sin\dfrac{3\pi}7}{\sin\dfrac{9\pi}7}=\dfrac{-\sin\left(\pi+\dfrac{3\pi}7\right)}{-\sin\left(2\pi-\dfrac{5\pi}7\right)}=2\cos\dfrac{5\pi}7$
So, we need $S=2\cos\dfrac{\pi}7+2\cos\dfrac{3\pi}7+2\cos\dfrac{5\pi}7$
Like $\sum \cos$ when angles are in arithmetic progression,
$\implies\sin\dfrac\pi7\cdot S=2\cos\dfrac{\pi}7\cdot\sin\dfrac\pi7+2\cos\dfrac{3\pi}7\cdot\sin\dfrac\pi7+2\cos\dfrac{5\pi}7\cdot\sin\dfrac\pi7$
Using Werner Formulas,
$\sin\dfrac\pi7\cdot S=\sin\dfrac{6\pi}7=\cdots=\sin\dfrac\pi7$