For , $k\in \mathbb N$ , let $$P_k(t)=C_k\left(\frac{1+\cos t}{2}\right)^k \text{ , } t\in [-\pi,\pi]$$where $C_k\in \mathbb R$ is choosen in such a way that $$\frac{1}{2\pi}\int_{-\pi}^{\pi}P_k(t)\,dt=1.$$
Then prove that $\displaystyle C_k \le \frac{\pi}{2}(k+1)$ for all $k\in \Bbb N$.
We have , $P_k(t)=C_k\cos^{2k}\left(t/2\right)$. Then , from $$\frac{1}{2\pi}\int_{-\pi}^{\pi}P_k(t)\,dt=1.$$ $$\implies 2C_k\int_0^{\pi/2}\cos^{2k}(z)\,dz=\pi$$ $$\implies C_k=\frac{\pi.k!}{\sqrt{\pi}.\Gamma \left(\frac{2k+1}{2}\right)}$$ Then , how I can proceed to complete the proof ?