$$\forall \ a, b \in \mathbb{R}, prove \hspace{5mm}\frac{|a+b|}{1 + |a+b|} \leqslant \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$
I decided to take different cases to solve this problem. For $a, b \geqslant 0$ and for $a, b < 0$, the inequality is obvious as $$\frac{|a+b|}{1 + |a+b|} = \frac{a}{1+|a+b|} + \frac{b}{1+|a+b|}$$ when $a, b \geqslant 0$ and $$\frac{|a+b|}{1 + |a+b|} = \frac{-a}{1+|a+b|} + \frac{-b}{1+|a+b|}$$ when $a, b < 0$
For $a \geqslant 0, b < 0$ and $|a| > |b|$, I was able to prove the inequality. However, I'm unable to prove in the case where $a \geqslant 0, b < 0$ and $|a| < |b|$.