If $b$ is a unit mod $p$, show that $(\frac{b}{p})+(\frac{2b}{p})+\cdot \cdot \cdot +(\frac{(p-1)b}{p})\equiv 0$.
Since $b\in U_p$ then $(\frac{1}{p})+(\frac{2}{p})+\cdot \cdot \cdot +(\frac{(p-1)}{p})$.
(So I'm not sure if I'm stating this part correctly) Therefore for each $(\frac{i}{p})$ for $i=1,...,p-1$, $i$ is either in $Q_p$ or not. Since $|Q_p|=\frac{\phi(p)}{2}=\frac{p-1}{2}$. Half will be in $Q_ p$ and the other half will not. So we get $(\frac{1}{p})+(\frac{2}{p})+\cdot \cdot \cdot +(\frac{(p-1)}{p})=1-1+1-\cdot\cdot\cdot +1\equiv0$.
Is this okay?