I'm going to asking a question about the polarization formula of an $n$-form.
Given an $n$-homogeneous form $q:V\rightarrow \mathbb{R}$ on a vector space $V,$ i.e., $\forall v\in V, r\in \mathbb{R},$ we have $q(rv) = r^nq(v),$ the polarization formula tells us that we can have an $n$-multilinear map $f:V^n\rightarrow\mathbb{R},$ $(v_1,...,v_n)\mapsto \frac{1}{n!}(\partial_{\alpha_1}...\partial_{\alpha_n} q(\alpha_1v_1+...+\alpha_nv_n))|_{(\alpha_1,...,\alpha_n)=(0,...,0)}$ such that $\forall v\in V,$ $f(v,...,v) = q(v).$
The equality $f(v,...,v) = q(v)$ is obvious, while my problem is that the $n$-multilinearity of this $f.$ This may be related to the linearity of the differential operators, but I cannot solve it by following the definition to prove $$\frac{1}{n!}(\partial_{\alpha_1}...\partial_{\alpha_n} q(\alpha_1(av_1+v)+...+\alpha_nv_n))|_{\alpha=(0,...,0)}=\\a\cdot\frac{1}{n!}(\partial_{\alpha_1}...\partial_{\alpha_n} q(\alpha_1v_1+...+\alpha_nv_n))|_{\alpha=(0,...,0)}+\frac{1}{n!}(\partial_{\alpha_1}...\partial_{\alpha_n} q(\alpha_1v+...+\alpha_nv_n))|_{\alpha=(0,...,0)}.$$ Or may my work be not feasible?
Thanks for any ideas in advance!