-2

Prove that $$\frac{1}{\sqrt{1-\sin^2{x}}}=\sum_{n=0}^{\infty} \frac{(2n)!(\sqrt{\sin{x}})^{4n}}{4^n (n!)^2}$$

1 Answers1

0

Hint. One may use the generalized binomial theorem (see here) to get, $$\begin{eqnarray*} \frac{1}{\sqrt{1-u}}=(1-u)^{-1/2}=\sum_{n=0}^\infty \frac{{2n\choose n}}{2^{2n}}u^{n} &, \qquad |u|<1, \end{eqnarray*}$$ then one may put $u:=\sin^2 x$.

Olivier Oloa
  • 120,989