During helping a junior , I came to this term: $$ \sin\left(4\tan^{-1}\frac{1}{2}\right) $$
using calculator , you will find the value $\frac{24}{25}$ which is correct one. But when you expand it like this(which my junior did) : \begin{align} \sin\left(4\tan^{-1}\frac{1}{2}\right) &= \\ &= \sin\left(2\tan^{-1}\frac{1}{1-\frac{1}{4}}\right) & [2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}] \\ &=\sin\left(2\tan^{-1}\frac{4}{3}\right) \\ &=\sin\left(\tan^{-1}\frac{2\cdot\frac{4}{3}}{1-\frac{16}{9}}\right) \\ &=\sin\left(\tan^{-1}\left(-\frac{24}{7}\right)\right) \end{align}
which value is $-\frac{24}{25}$ . Why this expansion is giving wrong answer ? where is the error ?