Here is another proof of the identity
$$s = \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{m n (m+n)} = 2 \zeta (3)$$
Letting
$$\frac{1}{n+m} = \int_0^1 t^{m+n-1} \, dt$$
the double sum factorizes nicely under the $t$-integral leading to
$$s =\int_0^1 t^{-1} \sum _{n=1}^{\infty }\frac{t^{n}}{n} \sum _{m=1}^{\infty }\frac{t^{m}}{m} \, dt$$
The sums are just $-\log (1-t)$ so that we have
$$s = \int_0^1 t^{-1} {\log (1-t)}^{2} \, dt$$
Letting now
$$t \to 1 - e^{-u}$$
gives
$$s = \int_0^\infty u^{2} \frac{e^{-u}}{1-e^{-u}} \, du$$
Expanding into a geometric sum gives
$$s = \sum _{k=1}^{\infty } \int_0^\infty u^{2}e^{- k\; u} \, du$$
The integral can easily be evaluated letting $k\; u \to z$ to give
$$\frac {1}{k^3} \Gamma(3)$$
Hence observing that $\Gamma(3)=2$ and
$$\sum _{k=1}^{\infty } \frac{1}{k^3} = \zeta(3)$$
completes the proof.