In the problem we have the inequality: $x - \frac{x^{2}}{2} < ln(1 + x) < x $ for $x > 0$
And we need to use to find : $\lim \Pi_{k=1}^{n} (1 + \frac{k}{n^{2}}) $
Taking $x = \frac{k}{n²}$ and using the function $e^{x}$ I get:
$e^{\sum_{k=1}^{n} \frac{k}{n²} + \frac{k²}{n^4}} < \Pi_{k=1}^{n} (1 + \frac{k}{n^{2}}) < e^{ \sum_{k=1}^{n}\frac{k}{n²}} $
I don't know how calculate the limits $\lim \sum_{k=1}^{n} (\frac{k}{n²} + \frac{k²}{n^4}) $ and $\sum_{k=1}^{n} \frac{k}{n²} $
How can I proceed? Thank you.
\Pifor\prod. – Did Apr 12 '17 at 07:40