Copy cat of Ramanujan identity
It has a neat closed form
$$\displaystyle\int_{-\infty}^{+\infty}xe^{-{\pi\over 4}x^2}{\sinh^2(3\pi x)\over \sinh(\pi x)}\mathrm dx=4\left(e^{\pi}+3e^{9\pi}+5e^{25\pi}\right)\tag1$$
Making an attempt:
Recall $$\int\sinh^2(3\pi x)\mathrm dx={\sinh(3\pi x)\cosh(3\pi x)\over 6\pi}-{x\over 2}+C\tag2$$
$$\int{1\over \sinh(\pi x)}\mathrm dx={1\over \pi}\ln{\tanh{\pi x\over 2}}+C\tag3$$
$$\int xe^{-{\pi\over 4}x^2}\mathrm dx=-{2\over \pi}e^{-{\pi\over 4}x^2}+C\tag4$$
$$\sinh(3\pi x)=3\sinh(\pi x)+4\sinh^3(\pi x)\tag5$$
Applying $(5)$ then $(1)$ becomes
$$\int_{-\infty}^{+\infty}xe^{-{\pi\over 4}x^2}{\sinh(3\pi x)}[3+4\sinh^2(\pi x)]\mathrm dx\tag6$$
Rewrite $(5)$ as
$$3\int_{-\infty}^{+\infty}xe^{-{\pi\over 4}x^2}{\sinh(3\pi x)}\mathrm dx+4\int_{-\infty}^{+\infty}xe^{-{\pi\over 4}x^2}{\sinh^2(\pi x)}\mathrm dx=I_1+I_2\tag7$$
Applying IBP to $I_1$, then we have
$$I_1=-{2\over \pi}e^{-{\pi\over 4}x^2}{\sinh(3\pi x)}+\int e^{-{\pi\over 4}x^2}{\cosh(3\pi x)}\mathrm dx\tag8$$
and to $I_2$
$$I_2=-{2\over \pi}e^{-{\pi\over 4}x^2}{\sinh^2(\pi x)}+{2\over \pi^2}\int e^{-{\pi\over 4}x^2}{\sinh(2\pi x)}\mathrm dx\tag9$$
This is too lengthy of a calculation method.
How can we tackle $(1)$ in a less cumbersome way? Or else just prove $(1)$