1

Find the value of $\sin \dfrac {\pi}{10} - \sin \dfrac {3\pi}{10}$

My Attempt: $$\sin \dfrac {\pi}{10} - \sin \dfrac {3\pi}{10}$$ $$\sin \dfrac {180}{10} - \sin \dfrac {3\times 180}{10}$$ $$\sin 18^\circ - \sin 54^\circ$$

Now,

Let $A=18^\circ$. $$5A=90^\circ$$ $$2A+3A=90^\circ$$ $$3A=90^\circ - 2A$$ Taking 'sin' on the both sides, $$\sin 3A=\sin (90^\circ - 2A)$$ $$3\sin A-4\sin^3 A=\cos 2A$$

What should I do further?

pi-π
  • 7,416

2 Answers2

2

$\cos 2A=1-2\sin^2 A$, then substitute $x=\sin A$.

szw1710
  • 8,102
2

$$\sin \dfrac {\pi}{10} - \sin \dfrac {3\pi}{10}=\cos72^{\circ}+\cos144^{\circ}=$$ $$=\frac{2\sin36^{\circ}\cos72^{\circ}+2\sin36^{\circ}\cos144^{\circ}}{2\sin36^{\circ}}=$$ $$=\frac{\sin108^{\circ}-\sin36^{\circ}+\sin180^{\circ}-\sin108^{\circ}}{2\sin36^{\circ}}=-\frac{1}{2}.$$ Done!