Find the value of $\sin \dfrac {\pi}{10} - \sin \dfrac {3\pi}{10}$
My Attempt: $$\sin \dfrac {\pi}{10} - \sin \dfrac {3\pi}{10}$$ $$\sin \dfrac {180}{10} - \sin \dfrac {3\times 180}{10}$$ $$\sin 18^\circ - \sin 54^\circ$$
Now,
Let $A=18^\circ$. $$5A=90^\circ$$ $$2A+3A=90^\circ$$ $$3A=90^\circ - 2A$$ Taking 'sin' on the both sides, $$\sin 3A=\sin (90^\circ - 2A)$$ $$3\sin A-4\sin^3 A=\cos 2A$$
What should I do further?