The $n^{th}$ term of this series, suppose:
$t_n=\dfrac{n^2}{n!}=\dfrac{n(n-1)+n}{n!}=\dfrac{n(n-1)}{n!}+\dfrac{n}{n!}=\dfrac{1}{(n-2)!}+\dfrac{1}{(n-1)!}$
Sum of terms:
\begin{align*}
S_n&=\dfrac{1^2}{1!}+\dfrac{2^2}{2!}+\dfrac{3^2}{3!} +\cdots\infty\\
&=\sum\limits_{n=1}^{\infty}t_n\\
&=\sum\limits_{n=1}^{\infty}\left[\dfrac{1}{(n-2)!}+\dfrac{1}{(n-1)!}\right]\\
&=\sum\limits_{n=1}^{\infty}\dfrac{1}{(n-2)!}+\sum\limits_{n=1}^{\infty}\dfrac{1}{(n-1)!}\\
&=\left(0+\dfrac{1}{1!}+\dfrac{2}{2!}+\dfrac{3}{3!} +\cdots\infty\right)+\left(\dfrac{1}{1!}+\dfrac{2}{2!}+\dfrac{3}{3!} +\cdots\infty\right)\\
&=e+e\\
&=2e
\end{align*}