Find the sum of the following series $$ \frac{1}{1 \cdot 2}\,+\,\frac{1}{2 \cdot 3}\,+\,\frac{1}{3 \cdot 4} +\cdots\,+\frac{1}{100 \cdot 101}$$
My Attempt:
$$\frac{1}{2 \cdot 3} =\frac{1}{2}-\frac{1}{3}.$$
So we can write question as:
$$\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\\ =\frac{1}{1}-\frac{1}{101}\\ =\frac{100}{101}.$$
Am i right?