I was observing this question and was able to conjecture $$\int_{0}^{1}\ln^{2n}\left(\ln\left({1-\sqrt{1-x^2}\over x}\right)\over \ln\left({1+\sqrt{1-x^2}\over x}\right)\right)\mathrm dx=(-\pi^2)^n\tag1$$ Where $n\ge1$.
Making an attempt: $$x=\sin u \implies dx=\cos udu$$ $$\int_{0}^{\pi/2}\ln^{2n}\left(\ln\left({1-\cos u\over \sin u}\right)\over \ln\left({1+\cos u\over \sin u}\right)\right)\cos u\,du\tag2$$ simplify further to $$\int_{0}^{\pi/2}\ln^{2n}\left(\ln\tan\left({u\over 2}\right)\over \ln\cot\left({u\over 2}\right)\right)\cos u\,du\tag3$$ $$\int_{0}^{\pi/2}\ln^{2n}(-1)\cos u\,du\tag4$$ This is not making any sense here!
How can we prove $(1)?$