Prove that :
$$\frac{1}{2} \tan^{-1}(2)+\frac{1}{3} \tan^{-1}(3)-2\tan^{-1}\left(\frac{1}{2}\right)-3\tan^{-1}\left(\frac{1}{3}\right)=-\frac{5 \pi}{8}+\frac{5}{6} \tan^{-1}(3)$$
Using the identities $\tan^{-1}(x)=\cot^{-1} (1/x)$ for $x>0$ and $\cot^{-1}(x)+\tan^{-1}(x)=\pi/2$ I have got $\frac{3}{2} \tan^{-1}(2)+\frac{10}{3} \tan^{-1}(3)- \frac{5 \pi}{2}$ but I am not able to get final result. Could someone help me with it?