I have the next limit :
$$\large \lim_{x\to 0}{x-\sin(\sin(\overbrace {\cdot \ \cdot \ \cdot }^n(\sin(x))\overbrace {\cdot \ \cdot \ \cdot }^n))\over x^{3}}$$
$\sin(\sin(...(\sin(x))...))$-is n times.
I have no idea. Someone can help me? Thank you!
- 195
-
Use L'hospital thrice – The Dead Legend May 02 '17 at 11:10
-
Related : https://math.stackexchange.com/questions/387333/are-all-limits-solvable-without-lh%C3%B4pital-rule-or-series-expansion – lab bhattacharjee May 02 '17 at 11:16
3 Answers
In a neighbourhood of the origin we have $$ \sin(x)= x-\frac{x^3}{6}+O(x^5) \tag{1}$$ hence by applying $\sin(\cdot)$ to both terms and exploiting the sine addition formulas and $(1)$ we get $$ \sin\sin(x) = x-\frac{x^3}{3}+O(x^5) \tag{2}$$ as well as $$ \sin\sin\sin(x) = x-\frac{x^3}{2}+O(x^5)\tag{3} $$ and $$ \sin^{[n]}(x) = x-\frac{nx^3}{6}+O(x^5)\tag{4} $$ by induction. It follows that: $$ \lim_{x\to 0}\frac{x-\sin^{[n]}(x)}{x^3} = \color{red}{\frac{n}{6}}\tag{5}$$
- 353,855
$$\lim_{x \rightarrow 0}\frac{1-\cos(x)\cos(\sin(x))......\cos(\sin(\sin..(\sin(x)....))}{3x^2}$$
This tends to $\frac {0}{0}$ Use L'Hospital again
$$\lim_{x \rightarrow 0}\frac{\sin(x)(\cos(\sin(x))......\cos(\sin(\sin..(\sin(x)....)))+\sin(\sin(x)(.......)}{6x}$$
Basically, will give $\sin(x)$ oriented terms to provide you a $\frac{0}{0}$ again. Note: Numerator has $n$ terms
Now, again. when you use L'hospital, it will give you $n$ terms which will be $\cos(x)$ oriented. Thus when $x\rightarrow 0$, these terms will $\rightarrow1$
giving you :
$$\frac{n}{6}$$ as the final answer
- 4,727
Let us rewrite \begin{align} \frac{x-\sin^{[n]}x}{x^3}&=\frac{x-\sin x+\sin x-\sin\sin x+\ldots+\sin^{[n-1]} x-\sin^{[n]} x}{x^3}=\\ &=\frac{x-\sin x}{x^3}+\frac{\sin x-\sin\sin x}{x^3}+\ldots+\frac{\sin^{[n-1]}x-\sin^{[n]}x}{x^3} \end{align} and calculte the limit of each fraction separately.
- Since $$ \sin t=t-\frac{t^3}{6}+o(t^3) $$ we have the first fraction just as $$ \frac{x-\sin x}{x^3}=\frac{\frac{x^3}{6}-o(x^3)}{x^3}=\frac16+o(x)\to\frac16. $$
- Similarly with notation $y=\sin^{[k-1]}x$ the $k$-th fraction is $$ \frac{\sin^{[k-1]}x-\sin^{[k]}x}{x^3}=\frac{y-\sin y}{x^3}=\frac{y-\sin y}{y^3}\cdot\frac{y^3}{x^3}=\left(\frac16+o(y)\right)\cdot\left(\frac{y}{x}\right)^3\to\frac16\cdot 1^3=\frac16 $$ because $$ \frac{y}{x}=\frac{\sin^{[k-1]}x}{x}=\frac{\sin^{[k-1]}x}{\sin^{[k-2]}x}\cdot\frac{\sin^{[k-2]}x}{\sin^{[k-3]}x}\cdot\ldots\cdot\frac{\sin x}{x}\to1\cdot 1\cdot\ldots\cdot 1=1. $$
- Finally the limit is $$ \underbrace{\frac16+\frac16+\ldots+\frac16}_{n\text{ times}}=\frac{n}{6}. $$
- 29,518