Show that $$\int ^{\infty}_{-\infty} \frac{\cos x}{e^x+e^{-x}}dx=\frac{\pi}{e^\frac{\pi}{2}+e^{-\frac{\pi}{2}}}.$$
How do we solve this? Since given function is even, it follows that $$ \int ^{\infty}_{-\infty} \frac{\cos x}{e^x+e^{-x}}dx= 2\int ^{\infty}_{0} \frac{\cos x}{e^x+e^{-x}}dx,$$ but I can't go for further.