Observe that from the RHS we have
$$\require{cancel}\begin{align}\frac{2(m+1)\Gamma(m+3/2)}{\sqrt\pi\Gamma(m+2)}&=\frac{2\cancel{(m+1)}(m+1/2)\Gamma(m+1/2)}{\Gamma(1/2)\cancel{(m+1)}\Gamma(m+1)}\\&=\frac{2(m+1/2)^\underline {m+1}\cancel{\Gamma(1/2)}}{m!\,\cancel{\Gamma(1/2)}}\\&=\binom{m+1/2}{m}=\prod_{k=1}^m\frac{k+1/2}{k}\\&=\prod_{k=1}^m\frac{2k+1}{2k}=\frac{(2m+1)!!}{(2m)!!}\tag{1}\end{align}$$
And from the LHS we have
$$\sum_{n=1}^{m} \frac{(2n)!}{2^{2n}(n!)^2}=\sum_{n=1}^{m}\frac{(2n)!}{((2n)!!)^2}=\sum_{n=1}^{m}\frac{(2n-1)!!}{(2n)!!}\tag{2}$$
To show that $(1)$ is equivalent to $(2)$ we can do this
$$\Delta\left(\frac{(2n+1)!!}{(2n)!!}\right)=\frac{(2n+3)!!}{(2n+2)!!}-\frac{(2n+1)!!}{(2n)!!}=\left(\frac{2n+3}{2n+2}-1\right)\cdot\frac{(2n+1)!!}{(2n)!!}=\\=\frac1{2n+2}\cdot\frac{(2n+1)!!}{(2n)!!}=\frac{(2n+1)!!}{(2n+2)!!}$$
Then
$$\sum_{n=h}^{m-1}\frac{(2n+1)!!}{(2n+2)!!}=\sum_{n=h+1}^{m}\frac{(2n-1)!!}{(2n)!!}=\frac{(2n+1)!!}{(2n)!!}\bigg|_h^m\tag{3}$$
And from $(2)$ and $(3)$ we get
$$\sum_{n=1}^m\frac{(2n-1)!!}{(2n)!!}=\frac{(2n+1)!!}{(2n)!!}\bigg|_0^m=\frac{(2m+1)!!}{(2m)!!}-1$$
But there is a difference of $1$!! I double-checked the difference in Wolfram-Alpha, so you have a typo in your exercise.